老余博客上线了!!!

Spring WebFlux之HttpHandler的探索

随笔 老余 5℃ 0评论

这是本人正在写的《Java 编程方法论:响应式Reactor3、Reactor-Netty和Spring WebFlux》一书的文章节选,它是《Java编程方法论:响应式RxJava与代码设计实战》的续篇,也可作为独立的一本来读 这是此节上半段的节选内容 HttpHandler的...

这是本人正在写的《Java 编程方法论:响应式Reactor3、Reactor-Netty和Spring WebFlux》一书的文章节选,它是《Java编程方法论:响应式RxJava与代码设计实战》的续篇,也可作为独立的一本来读

这是此节上半段的节选内容

HttpHandler的探索

通过前面的章节,我们已经接触了Reactor-Netty整个流程的设计实现细节,同时也涉及到了reactor.netty.http.server.HttpServer#handle,准确得说,它是一个SPI(Service Provider Interface)接口,对外提供BiFunction<? super HttpServerRequest, ? super HttpServerResponse, ? extends Publisher<Void>> handler,这样,我们可以针对该handler依据自身环境进行相应实现。
Spring WebFluxReactor-Netty都有一套属于自己的实现,只不过前者为了适应Spring Web的一些习惯做了大量的适配设计,整个过程比较复杂,后者提供了一套简单而灵活的实现。那么本章我们就从Reactor-Netty内对它的实现开始,正式向Spring WebFlux进行过渡。

HttpServerRoutes设定

往往我们在给后台服务器提交HTTP请求的时候,往往会涉及到getheadpostput这几种类型,还会包括请求地址,服务端会根据请求类型和请求地址提供对应的服务,然后才是具体的处理,那么我们是不是可以将寻找服务的这个过程抽取出来,形成服务路由查找。

于是,在Reactor-Netty中,设计了一个HttpServerRoutes接口,该接口继承了BiFunction<HttpServerRequest, HttpServerResponse, Publisher<Void>>,用来路由请求,当请求来临时,对我们所设计的路由规则按顺序依次查找,直到第一个匹配,然后调用对应的处理handlerHttpServerRoutes接口内针对于我们常用的getheadpostputdelete等请求设计了对应的路由规则(具体请看下面源码)。

我们在使用的时候首先会调用HttpServerRoutes#newRoutes得到一个DefaultHttpServerRoutes实例,然后加入我们设计的路由规则,关于路由规则的设计,其实就是将一条条规则通过一个集合管理起来,然后在需要时进行遍历匹配即可,这里它的核心组织方法就是reactor.netty.http.server.HttpServerRoutes#route,在规则设计完后,我们就可以设计对应每一条规则的BiFunction<HttpServerRequest, HttpServerResponse, Publisher<Void>>函数式实现,最后,当请求路由匹配成功,就可以调用我们的BiFunction实现,对请求进行处理。

//reactor.netty.http.server.HttpServerRoutes
public interface HttpServerRoutes extends
                                  BiFunction<HttpServerRequest, HttpServerResponse, Publisher<Void>> {

    static HttpServerRoutes newRoutes() {
        return new DefaultHttpServerRoutes();
    }


    default HttpServerRoutes delete(String path,
            BiFunction<? super HttpServerRequest, ? super HttpServerResponse, ? extends Publisher<Void>> handler) {
        return route(HttpPredicate.delete(path), handler);
    }

    ...

    default HttpServerRoutes get(String path,
            BiFunction<? super HttpServerRequest, ? super HttpServerResponse, ? extends Publisher<Void>> handler) {
        return route(HttpPredicate.get(path), handler);
    }

    default HttpServerRoutes head(String path,
            BiFunction<? super HttpServerRequest, ? super HttpServerResponse, ? extends Publisher<Void>> handler) {
        return route(HttpPredicate.head(path), handler);
    }

    default HttpServerRoutes index(final BiFunction<? super HttpServerRequest, ? super HttpServerResponse, ? extends Publisher<Void>> handler) {
        return route(INDEX_PREDICATE, handler);
    }

    default HttpServerRoutes options(String path,
            BiFunction<? super HttpServerRequest, ? super HttpServerResponse, ? extends Publisher<Void>> handler) {
        return route(HttpPredicate.options(path), handler);
    }

    default HttpServerRoutes post(String path,
            BiFunction<? super HttpServerRequest, ? super HttpServerResponse, ? extends Publisher<Void>> handler) {
        return route(HttpPredicate.post(path), handler);
    }

    default HttpServerRoutes put(String path,
            BiFunction<? super HttpServerRequest, ? super HttpServerResponse, ? extends Publisher<Void>> handler) {
        return route(HttpPredicate.put(path), handler);
    }

    HttpServerRoutes route(Predicate<? super HttpServerRequest> condition,
            BiFunction<? super HttpServerRequest, ? super HttpServerResponse, ? extends Publisher<Void>> handler);

    ...

}

关于路由规则的设计,结合前面所讲,我们可以在HttpServerRoutes的实现类中设计一个List用来存储一条条的规则,接下来要做的就是将制定的规则一条条放入其中即可,因为这是一个添加过程,并不需要返回值,我们可以使用Consumer<? super HttpServerRoutes>来代表这个过程。对于请求的匹配,往往都是对请求的条件判断,那我们可以使用Predicate<? super HttpServerRequest>来代表这个判断逻辑,由于单条路由规则匹配对应的BiFunction<HttpServerRequest, HttpServerResponse, Publisher<Void>>处理,那么我们是不是可以将这两者耦合到一起,于是reactor.netty.http.server.DefaultHttpServerRoutes.HttpRouteHandler就设计出来了:

//reactor.netty.http.server.DefaultHttpServerRoutes.HttpRouteHandler
static final class HttpRouteHandler
        implements BiFunction<HttpServerRequest, HttpServerResponse, Publisher<Void>>,
                    Predicate<HttpServerRequest> {

    final Predicate<? super HttpServerRequest>          condition;
    final BiFunction<? super HttpServerRequest, ? super HttpServerResponse, ? extends Publisher<Void>>
                                                        handler;
    final Function<? super String, Map<String, String>> resolver;

    HttpRouteHandler(Predicate<? super HttpServerRequest> condition,
            BiFunction<? super HttpServerRequest, ? super HttpServerResponse, ? extends Publisher<Void>> handler,
            @Nullable Function<? super String, Map<String, String>> resolver) {
        this.condition = Objects.requireNonNull(condition, "condition");
        this.handler = Objects.requireNonNull(handler, "handler");
        this.resolver = resolver;
    }

    @Override
    public Publisher<Void> apply(HttpServerRequest request,
            HttpServerResponse response) {
        return handler.apply(request.paramsResolver(resolver), response);
    }

    @Override
    public boolean test(HttpServerRequest o) {
        return condition.test(o);
    }
}

这里可能需要对request中的参数进行解析,所以对外提供了一个可供我们自定义的参数解析器实现接口:Function<? super String, Map<String, String>>,剩下的conditionresolver就可以按照我们前面说的逻辑进行。

此时,HttpRouteHandler属于一个真正的请求校验者和请求业务处理者,我们现在要将它们的功能通过一系列逻辑串联形成一个处理流程,那么这里可以通过一个代理模式进行,我们在HttpServerRoutes的实现类中通过一个List集合管理了数量不等的HttpRouteHandler实例,对外,我们在使用reactor.netty.http.server.HttpServer#handle时只会看到一个BiFunction<HttpServerRequest, HttpServerResponse, Publisher<Void>>实现,那么,所有的逻辑流程处理都应该在这个BiFunctionapply(...)实现中进行,于是,我们就有下面的reactor.netty.http.server.DefaultHttpServerRoutes实现:

//reactor.netty.http.server.DefaultHttpServerRoutes
final class DefaultHttpServerRoutes implements HttpServerRoutes {


    private final CopyOnWriteArrayList<HttpRouteHandler> handlers =
            new CopyOnWriteArrayList<>();
    ...
    @Override
    public HttpServerRoutes route(Predicate<? super HttpServerRequest> condition,
            BiFunction<? super HttpServerRequest, ? super HttpServerResponse, ? extends Publisher<Void>> handler) {
        Objects.requireNonNull(condition, "condition");
        Objects.requireNonNull(handler, "handler");

        if (condition instanceof HttpPredicate) {
            handlers.add(new HttpRouteHandler(condition,
                    handler,
                    (HttpPredicate) condition));
        }
        else {
            handlers.add(new HttpRouteHandler(condition, handler, null));
        }
        return this;
    }

    @Override
    public Publisher<Void> apply(HttpServerRequest request, HttpServerResponse response) {
        final Iterator<HttpRouteHandler> iterator = handlers.iterator();
        HttpRouteHandler cursor;

        try {
            while (iterator.hasNext()) {
                cursor = iterator.next();
                if (cursor.test(request)) {
                    return cursor.apply(request, response);
                }
            }
        }
        catch (Throwable t) {
            Exceptions.throwIfJvmFatal(t);
            return Mono.error(t); //500
        }

        return response.sendNotFound();
    }
    ...
}

可以看到route(...)方法只是做了HttpRouteHandler实例的构建并交由handlers这个list进行管理,通过上面的apply实现将前面的内容在流程逻辑中进行组合。于是,我们就可以在reactor.netty.http.server.HttpServer中设计一个route方法,对外提供一个SPI接口,将我们所提到的整个过程定义在这个方法中(得到一个HttpServerRoutes实例,然后通过它的route方法构建规则,构建过程在前面提到的Consumer<? super HttpServerRoutes>中进行,最后将组合成功的HttpServerRoutesBiFunction<HttpServerRequest, HttpServerResponse, Publisher<Void>>的角色作为参数交由HttpServer#handle)。

另外,我们在这里要特别注意下,在上面DefaultHttpServerRoutes实现的apply方法中,可以看出,一旦请求匹配,处理完后就直接返回结果,不再继续遍历匹配,也就是说每次新来的请求,只调用所声明匹配规则顺序的第一个匹配。

//reactor.netty.http.server.HttpServer#route
public final HttpServer route(Consumer<? super HttpServerRoutes> routesBuilder) {
    Objects.requireNonNull(routesBuilder, "routeBuilder");
    HttpServerRoutes routes = HttpServerRoutes.newRoutes();
    routesBuilder.accept(routes);
    return handle(routes);
}

于是,我们就可以通过下面的Demo来应用上面的设计:

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

    public static void main(String[] args) {
        DisposableServer server =
                HttpServer.create()
                          .route(routes ->
                              routes.get("/hello",        <1>
                                         (request, response) -> response.sendString(Mono.just("Hello World!")))
                                    .post("/echo",        <2>
                                         (request, response) -> response.send(request.receive().retain()))
                                    .get("/path/{param}", <3>
                                         (request, response) -> response.sendString(Mono.just(request.param("param")))))
                          .bindNow();

        server.onDispose()
              .block();
    }
}

<1>处,当我们发出一个GET请求去访问/hello时就会得到一个字符串Hello World!

<2>处,当我们发出一个 POST请求去访问 /echo时就会将请求体作为响应内容返回。

<3>处,当我们发出一个 GET请求去访问 /path/{param}
时就会得到一个请求路径参数param的值。

关于SSE在这里的使用,我们可以看下面这个Demo,具体的代码细节就不详述了,看对应注释即可:

import com.fasterxml.jackson.databind.ObjectMapper;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.ByteBufAllocator;
import org.reactivestreams.Publisher;
import reactor.core.publisher.Flux;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import reactor.netty.http.server.HttpServerRequest;
import reactor.netty.http.server.HttpServerResponse;

import java.io.ByteArrayOutputStream;
import java.nio.charset.Charset;
import java.time.Duration;
import java.util.function.BiFunction;

public class Application {

    public static void main(String[] args) {
        DisposableServer server =
                HttpServer.create()
                          .route(routes -> routes.get("/sse", serveSse()))
                          .bindNow();

        server.onDispose()
              .block();
    }

    /**
     * 准备 SSE response
     * 参考 reactor.netty.http.server.HttpServerResponse#sse可以知道它的"Content-Type" 
     * 是"text/event-stream"
     * flush策略为通过所提供的Publisher来每下发一个元素就flush一次
     */
    private static BiFunction<HttpServerRequest, HttpServerResponse, Publisher<Void>> serveSse() {
        Flux<Long> flux = Flux.interval(Duration.ofSeconds(10));
        return (request, response) ->
            response.sse()
                    .send(flux.map(Application::toByteBuf), b -> true);
    }

    /**
     * 将发元素按照按照给定的格式由Object转换为ByteBuf。
     */
    private static ByteBuf toByteBuf(Object any) {
        ByteArrayOutputStream out = new ByteArrayOutputStream();
        try {
            out.write("data: ".getBytes(Charset.defaultCharset()));
            MAPPER.writeValue(out, any);
            out.write("\n\n".getBytes(Charset.defaultCharset()));
        }
        catch (Exception e) {
            throw new RuntimeException(e);
        }
        return ByteBufAllocator.DEFAULT
                               .buffer()
                               .writeBytes(out.toByteArray());
    }

    private static final ObjectMapper MAPPER = new ObjectMapper();
}

转载请注明:老余博客 » Spring WebFlux之HttpHandler的探索

读后有收获可以请作者喝咖啡:

喜欢 (0)or分享 (0)
发表我的评论
取消评论
表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址